Bethe-Salpeter Equation

Time-dependent approach




Beyond the independent-particle picture
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The Bethe-Salpeter equation




Going beyond the
independent-particle picture

Knowledge of the electronic system
=> Description of its excitations
=> Predictive theoretical spectroscopy
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Going beyond the
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From Fermi’s golden rule we know that:

AbS OC Z D? cuk 5 W — [Eck - E’Uk])

cvk Optical Electronic transitions
strength
Lithium fluoride
Let’s do a I
DFT+GW L :' o EXp -
calculation: .. — Theory

Completely wrong! .
Presence of below
band gap ' 3

excitations!

8 10 12 14 16
Energy [eV]

18

20




Going beyond the
independent-particle picture

We need to account for the electron- hole interaction
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Going beyond the
independent-particle picture

Especially relevant to layered/2D materials
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independent-particle picture

Especially relevant to layered/2D materials
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How can we derive the BSE?

Non-equilibrium dynamics of the response function
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Choosing a description
for the electronic system

Single-particle Hamiltonian from Hartree-Fock

A A

H° =T,
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We may also build the
Hamiltonian from DFT (Kohn-
Sham), DFT + G,W,, etc.
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Choosing a description
for the electronic system

Single-particle Hamiltonian from Hartree-Fock

A A

H® =T, +Ve_n VH[PO] B[P

oY n) = E, |n) Single-particle energies

<I"n> = gon(r) Bloch function



Choosing a description
for the electronic system

Single-particle Hamiltonian from Hartree-Fock

H =T.+V, _u

Equilibrium particle density

Pw) = 3 I Pélén
p'(r) = (p°(r)) = Z \%(I‘)\@\

State occupations
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[at zero T and for semiconductors

either O or 1]



Time-dependent Hamiltonian
and density matrix

Full Hamiltonian

H(t) = H° + + AVE[p()] + AX®[p(2)]

External field



Time-dependent Hamiltonian
and density matrix

Full Hamiltonian

If the density changes, its

i A i ~ i functionals also change
AST[p(t)] = S [p(t)] — 57[p%) g




Time-dependent Hamiltonian
and density matrix

Full Hamiltonian

H(t)=H°+Ut) + AVE[pt)] + AX®[p(t)]
Density matrix out of equilibrium
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Linear response function

As we have seen in a previous lecture (Kubo / Linear response):
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Linear response function

As we have seen in a previous lecture (Kubo / Linear response):

op(rt)
t,r't) =
Xt rt) = Sr |
with
Xt x't) = 3 on, (0)97, (1)@, (), (2)xrtima (£,1)

0Pninsg (1)
N nin2
And then {Xﬁézi (ta t ) o 5Un3’n4 (t/) UO}

We need to find the equation of
motion for the response function!




Equation of motion

For the density matrix (for more info attend Real Time lecture):

o prana0) = [1(2), (1)

nimns2



Equation of motion

For the density matrix (for more info attend Real Time lecture):

o prana0) = [1(2), (1)

nimns2

For the response function (taking the functional derivative of the above):

¥ R R
{1§Xg;gi (tvt ) — 5Un3n4 (t/) [H(t),p(t)} nan

The solution of this equation
will yield the BSE!




Taking care of the two-
particle kernel

Rewriting the density functionals
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Taking care of the two-
particle kernel

Rewriting the density functionals
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Taking care of the two-
particle kernel

Rewriting the density functionals

o - oV
=) / diat Vs
mime 0 Pmgma (1)

By doing the same for AX* we obtain:



Taking care of the two-
particle kernel

Rewriting the density functionals

AV To)] + AZE L [p(t)] =

nin2

02F =
- [ el Gt 6

Two-particle “kernel”

In order to proceed we will write down explicitly anm and X
and then compute the derivatives



Time-dependent
Hartree
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Time-dependent
Hartree

We insert the expansion of the
time-dependent density
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Time-dependent

Hartree
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Time-dependent
Hartree

* * 1
Vi) =230 puia(®) [ € d® @, (117, () () () =
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ki,

Momentum conservation implies that V
does not carry an internal momentum



Time-dependent
Hartree
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Exchange (and
correlation) self-energy

Time-dependent exchange
Y (rt,r't) = iG° (rt, r't)v(r, 1)
— —p(I’I’ 7t) ( )




Exchange (and
correlation) self-energy

Time-dependent exchange
Y (rt,r't) = iG (rt,x't)v(xr, 1)

= —p(rr, o(r,r/) ™ ,

LY P

ISSUE: the unscreened Coulomb interaction overbinds electron and
holes, giving wrong optical spectra.
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Exchange (and
correlation) self-energy

Time-dependent SEX W

Wi(r,r') = /dgr"eg};A(r r'u(r”,r)

SOLUTION: we replace the Fock term with
the statically screened exchange (SEX)
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Exchange (and
correlation) self-energy

Time-dependent SEX W aqw

Wi(r,r') = /dgr"eg};A(r r'u(r”,r)

SOLUTION: we replace the Fock term with
the statically screened exchange (SEX) k —k
na n1
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Exchange (and
correlation) self-energy

Time-dependent SEX
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Exchange (and
correlation) self-energy

Time-dependent SEX

{ ZEL]?T)L{Q (t) — = Zpl1l2 (t)Wn1l2 J

l1l2 l1n2

5ESEX (t) B J
AL = — —Wn1m2 5 t — t >
{ Somyma® g O )

NEGLECTED!
(Higher order in the
interaction)




Solving the equation of

motion
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Solving the equation of
motion

Computing the commutators...

p
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Solving the equation of

motion
Computing the commutators...

4 ) ) )
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Solving the equation of
motion

Computmg the commutators...

\_
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Analogous to }




Solving the equation of
motion

Computing the derivative...
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Solving the equation of
motion

Computing the derivative...
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Solving the equation of

motion
Computing the derivative...
.0
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Electron-hole interaction kernel




Solving the equation of

motion
Computing the derivative...
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fe-h pair created at time tand\ " A

recombined at time t’ Electron-hole interaction kernel

/ / 1 — _ q+,=0
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Electron-hole attractive Repulsive contribution

interaction (binding term)



Solving the equation of

motion
Switching to the transition basis... o
/ A basis of electron-hole transitions \ A
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Solving the equation of

motion
Switching to the transition basis...
4 A basis of electron-hole transitions A ',"/‘P p A \\‘
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Solving the equation of
motion

Taking the Fourier transform...

(w — AE}C) X CIC! (w) = 1fIC —i(S]C}C/ + ZKICE Xicrc (LU)




Solving the equation of

motion

Taking the Fourier transform...

(w—AFEx) xxcxr (W) = ifx

K

If K=0, we obtain the independent-particle response.
It is diagonal in the transition basis!

Xk (w)

fx
W — AE}C




Bethe-Salpeter equation

(As Dyson-like equation)
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Bethe-Salpeter equation

(As Dyson-like equation)
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X (W) = xx(w) + xx (W) Z Kix Xer (W)
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Inversion of the BSE

We isolate the response function on the left hand side

Z [(w — AE/C)(SKE - ifICK/cK] X1crc (W) = [0k
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Inversion of the BSE

We isolate the response function on the left hand side
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... and recognize a two-particle Hamiltonian
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Inversion of the BSE

We isolate the response function on the left hand side

Z [(w — AE/C)(SKE - ifICK/cK] X1crc (W) = [0k

KK

... and recognize a two-particle Hamiltonian

Z Wik — (AEk0k + ific Kiexe)| X (W) = S

A

> {W%E —H ,i%} Xrxr (W) = frr
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Inversion of the BSE

In matrix form we have

—

{1@0 — HAZP} x =1

And after performing matrix inversion

—

R —1
= [1w—H2p} f

This indeed looks like a two-particle propagator



Inversion of the BSE

If we diagonalize the excitonic Hamiltonian
Excitonic
AN b .
H?P |\ = B, [\ bs

Exciton energies

<]C‘)\> — A’f . Exciton

coefficients

Then the equation for the response function can
be finally written in terms of the excitonic basis
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Inversion of the BSE

If we diagonalize the excitonic Hamiltonian
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Exciton energies
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Inversion of the BSE

If we diagonalize the excitonic Hamiltonian
Excitonic
AN b .
H?P |\ = B, [\ bs

Exciton energies

<]C‘)\> — Alf . Exciton

coefficients

Then the equation for the response function can
be finally written in terms of the excitonic basis
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Inversion of the BSE

If we diagonalize the excitonic Hamiltonian

Excitonic
I:IZp ’)‘> — F, ‘>‘>/ basis

Exciton energies

C ik
~
’ N

_ AK i
KA = A3 " cocficionts

S
““““““

Then the equation for the response function can
be finally written in terms of the excitonic basis

VAN
Xk (w) = [;—5] o (w) = Z A; (A;)\)

A y
[v->c transitions]

/

.




Excitonic Hamiltonian

In the end, the problem of the correlated propagation of particles and
holes, i.e., the spectroscopy of neutral excitations, can be reduced to the
diagonalization of an effective two-particle Hamiltonian

H,QCZ;C, — AFicoicicr + 1fic K



Excitonic Hamiltonian

In the end, the problem of the correlated propagation of particles and
holes, i.e., the spectroscopy of neutral excitations, can be reduced to the
diagonalization of an effective two-particle Hamiltonian

H,QCZ;C, — AFicoicicr + 1fic K

Screened interaction and mixing of electronic transitions:

[ Kixr =i [Wir—2Vik:] J




Excitonic Hamiltonian

In the end, the problem of the correlated propagation of particles and
holes, i.e., the spectroscopy of neutral excitations, can be reduced to the
diagonalization of an effective two-particle Hamiltonian

H,QCZ;C, — AFicoicicr + 1fic K

Ingredients:
/Quasiparticle\ fSingIe—particIe wave\ 4 Static electronic )
energies functions (DFT) screening
(DFT + GW) (DFT + RPA)

—1

En ) \_ Pn (I‘) ) \_ ERPA W
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Take-home message

O Independent-particle picture fails
to reproduce key spectral features ‘\
due to lack of electron-hole

Interaction QO The electron-hole interaction

can be accounted for in the
dynamics of the excited

\
| ,
\
\
. . electronic system
U The equation of motion for the
\
\
\
\

response function reduces to the
diagonalization of an effective
two-particle Hamiltonian in the
basis of electronic transitions
¥ QO This yields the optical absorption
in the excitonic picture
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