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Beyond the independent-particle picture

The equation of motion of 
the response function

The electron-hole interaction
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The Bethe-Salpeter equation



Going beyond the 
independent-particle picture

Knowledge of the electronic system
=> Description of its excitations

=> Predictive theoretical spectroscopy
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Going beyond the 
independent-particle picture

From Fermi’s golden rule we know that:

Lithium fluoride
Let’s do a 
DFT+GW 

calculation:

Completely wrong!
Presence of below 

band gap 
excitations!
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Going beyond the 
independent-particle picture

We need to account for the electron-hole interaction

Exciton energiesOptical strength

Lithium fluoride
New 
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Going beyond the 
independent-particle picture

Especially relevant to layered/2D materials

Hexagonal 
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How can we derive the BSE?

Iteration of Hedin’s 
equations that contain the 

response function
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Generalization of the response 
function to 4-point…

Non-equilibrium dynamics of the response function
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Single-particle Hamiltonian from Hartree-Fock

We may also build the 
Hamiltonian from DFT (Kohn-
Sham), DFT + G0W0, etc.

Ĥ0 = T̂e + Ve�N + V̂ H [⇢0] + ⌃̂x[⇢0]

Choosing a description 
for the electronic system



Single-particle energiesĤ0 |ni = En |ni

Bloch function

Ĥ0 = T̂e + Ve�N + V̂ H [⇢0] + ⌃̂x[⇢0]

hr|ni = 'n(r)

Single-particle Hamiltonian from Hartree-Fock

Choosing a description 
for the electronic system



Choosing a description 
for the electronic system

Equilibrium particle density

⇢0(r) = h⇢̂0(r)i =
X

n

|'n(r)|2fn
State occupations

[at zero T and for semiconductors 
either 0 or 1] 

⇢̂0(r) =
X

n

|'n(r)|2ĉ†nĉn

Ĥ0 = T̂e + Ve�N + V̂ H [⇢0] + ⌃̂x[⇢0]

Single-particle Hamiltonian from Hartree-Fock



Time-dependent Hamiltonian 
and density matrix

Full Hamiltonian

External field

Ĥ(t) = Ĥ0 + U(t) +�V̂ H [⇢(t)] +�⌃̂x[⇢(t)]



Time-dependent Hamiltonian 
and density matrix

Full Hamiltonian

Ĥ(t) = Ĥ0 + U(t) +�V̂ H [⇢(t)] +�⌃̂x[⇢(t)]

�V̂ H [⇢(t)] = V̂ H [⇢(t)]� V̂ H [⇢0]

�⌃̂x[⇢(t)] = ⌃̂x[⇢(t)]� ⌃̂x[⇢0]

If the density changes, its 
functionals also change



Time-dependent Hamiltonian 
and density matrix

Full Hamiltonian

Ĥ(t) = Ĥ0 + U(t) +�V̂ H [⇢(t)] +�⌃̂x[⇢(t)]

Density matrix out of equilibrium

⇢̂(r, t) = �i lim
t0!t

Ĝ(r, t, t0) =
X

n1n2

'n1(r)'
⇤
n2
(r)⇢̂n2n1(t)

⇢̂n2n1(t) = ĉ†n2
(t)ĉn1(t)



Linear response function
As we have seen in a previous lecture (Kubo / Linear response):

�(rt, r0t0) =
�⇢(rt)

�U(r0t0)
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U=0



Linear response function

with
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Linear response function

with

And then

We need to find the equation of 
motion for the response function!

�(rt, r0t0) =
�⇢(rt)

�U(r0t0)

����
U=0

�(rt, r0t0) =
X

n1n2
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(r0)'n4(r
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n3n4
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�Un3n4(t
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As we have seen in a previous lecture (Kubo / Linear response):



Equation of motion
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⇢n1n2(t) =

h
Ĥ(t), ⇢̂(t)

i

n1n2

For the density matrix (for more info attend Real Time lecture):
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⇢n1n2(t) =

h
Ĥ(t), ⇢̂(t)

i

n1n2

For the response function (taking the functional derivative of the above):

The solution of this equation 
will yield the BSE!

Equation of motion
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�
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Ĥ(t), ⇢̂(t)

i

n1n2

For the density matrix (for more info attend Real Time lecture):



Taking care of the two-
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Rewriting the density functionals
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Rewriting the density functionals

Two-particle “kernel”

Taking care of the two-
particle kernel

In order to proceed we will write down explicitly ⌃x

n1n2
V H
n1n2

and then compute the derivatives
and

�V H
n1n2

[⇢(t)] +�⌃x
n1n2

[⇢(t)] =

=
X
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m2m4

Z
dtdt


�V H
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[⇢(t)]

�⇢m3m4(t)
+

�⌃x
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[⇢(t)]

�⇢m3m4(t)

�
�m3m4
m1m2

(t, t) �Um1m2(t)
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We insert the expansion of the 
time-dependent density

Time-dependent 
Hartree
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Momentum conservation implies that 
does not carry an internal momentum

V H
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qv = 0
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Exchange (and 
correlation) self-energy

Time-dependent exchange

⌃x(rt, r0t) = iG0(rt, r0t)v(r, r0)

= �⇢(rr0, t)v(r, r0)

v

⇢r r0



Exchange (and 
correlation) self-energy

⌃x(rt, r0t) = iG0(rt, r0t)v(r, r0)

= �⇢(rr0, t)v(r, r0)

Time-dependent exchange

ISSUE: the unscreened Coulomb interaction overbinds electron and 
holes, giving wrong optical spectra.

⌃x

n1n2
(t) = �

X

l1l2

⇢
l1l2(t)

Z
d3r d3r0 '⇤

l1
(r0)'

l2(r)'
⇤
n1
(r)'

n2(r
0)v(r, r0)

v

⇢r r0
n1

n2l2

l1



Exchange (and 
correlation) self-energy

Time-dependent SEX

SOLUTION: we replace the Fock term with 
the statically screened exchange (SEX)

W (r, r0) =

Z
d3r00"�1

RPA(r, r
00)v(r00, r)

⌃SEX
n1n2

(t) = �
X

l1l2

⇢l1l2(t)

Z
d3r d3r0 '⇤

l1(r
0)'l2(r)'

⇤
n1
(r)'n2(r

0)W (r, r0)

⇢r r0
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n2l2
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W



Exchange (and 
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Exchange (and 
correlation) self-energy

Time-dependent SEX
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Exchange (and 
correlation) self-energy

Time-dependent SEX

⌃SEX
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(t) = �
X

l1l2

⇢l1l2(t)Wn1l2
l1n2

�⌃SEX
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�⇢m3m4(t)
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m1n2
�(t� t)

�W

�⇢

NEGLECTED!
(Higher order in the 

interaction)



Solving the equation of 
motion

A

B

C
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Ĥ0(t), ⇢̂(t)
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+
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Z
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Ŵ � 2V̂
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Solving the equation of 
motion

Computing the commutators…

h
Ĥ0, ⇢̂(t)

i

n1n2

= hn1| Ĥ0⇢̂(t) |n2i � hn1| ⇢̂(t)Ĥ0 |n2i

= (En1 � En2)⇢n1n2(t)

A



Solving the equation of 
motion

h
Û(t), ⇢̂(t)

i

n1n2

=
h
Û(t), ⇢̂0

i

n1n2

= (fn2 � fn1)Un1n2(t)

We stay at 
1st order in UB

Computing the commutators…

h
Ĥ0, ⇢̂(t)

i

n1n2

= hn1| Ĥ0⇢̂(t) |n2i � hn1| ⇢̂(t)Ĥ0 |n2i

= (En1 � En2)⇢n1n2(t)

A



Solving the equation of 
motion

Computing the commutators…

h
Ĥ0, ⇢̂(t)

i

n1n2

= hn1| Ĥ0⇢̂(t) |n2i � hn1| ⇢̂(t)Ĥ0 |n2i

= (En1 � En2)⇢n1n2(t)

A

C Analogous to B



Solving the equation of 
motion

Computing the derivative…
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Solving the equation of 
motion

Computing the derivative…

e-h pair created at time t and 
recombined ad time t’
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Solving the equation of 
motion

Computing the derivative…

Electron-hole interaction kernel 
e-h pair created at time t and 
recombined ad time t’

�iK n1n2
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� 2
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Solving the equation of 
motion

Computing the derivative…

Electron-hole interaction kernel 
e-h pair created at time t and 
recombined at time t’

Electron-hole attractive 
interaction (binding term)

Repulsive contribution
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Solving the equation of 
motion

Switching to the transition basis…

|n1n2i = |Ki

hr|n1n2i = '⇤
n1
(r)'n2(r)

A basis of electron-hole transitions

K



Solving the equation of 
motion

Switching to the transition basis…

|n1n2i = |Ki

hr|n1n2i = '⇤
n1
(r)'n2(r)

A basis of electron-hole transitions
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Solving the equation of 
motion

Taking the Fourier transform…

(! ��EK) �KK0(!) = ifK
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4�i�KK0 +
X
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KKK �KK0(!)
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Solving the equation of 
motion

Taking the Fourier transform…

If K=0, we obtain the independent-particle response. 
It is diagonal in the transition basis!

�0
K(!) =

fK
! ��EK

(! ��EK) �KK0(!) = ifK
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4�i�KK0 +
X

K

KKK �KK0(!)

3
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Bethe-Salpeter equation
(As Dyson-like equation)

�KK0(!) = �0
K(!) + �0

K(!)
X

K

KKK �KK0(!)

= +� ��0
�0

K



Bethe-Salpeter equation
(As Dyson-like equation)
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Inversion of the BSE

We isolate the response function on the left hand side
X

K

[(! ��EK)�KK � ifKKKK]�KK0(!) = fK�KK0



Inversion of the BSE

… and recognize a two-particle Hamiltonian

We isolate the response function on the left hand side
X

K

[(! ��EK)�KK � ifKKKK]�KK0(!) = fK�KK0

X

K

[!�KK � (�EK�KK + ifKKKK)]�KK0(!) = fK0



Inversion of the BSE

… and recognize a two-particle Hamiltonian

We isolate the response function on the left hand side

X

K

[!�KK � (�EK�KK + ifKKKK)]�KK0(!) = fK0

X

K

[(! ��EK)�KK � ifKKKK]�KK0(!) = fK�KK0

X

K

h
!�KK �H2p

KK

i
�KK0(!) = fK0



Inversion of the BSE

In matrix form we have

And after performing matrix inversion

This indeed looks like a two-particle propagator 

h
1! � Ĥ2p

i
· �̂ = ~f

�̂ =
h
1! � Ĥ2p

i�1
· ~f



Inversion of the BSE
If we diagonalize the excitonic Hamiltonian

Then the equation for the response function can 
be finally written in terms of the excitonic basis

Ĥ2p |�i = E� |�i

hK|�i = AK
�

Exciton energies

Excitonic 
basis

Exciton 
coefficients
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Inversion of the BSE
If we diagonalize the excitonic Hamiltonian

Then the equation for the response function can 
be finally written in terms of the excitonic basis

Ĥ2p |�i = E� |�i

hK|�i = AK
�

Exciton energies

Excitonic 
basis

Exciton 
coefficients

[v->c transitions]

�KK0(!) =


�⇢

�U

�

KK0
(!) =

X

�

AK
�

⇣
AK0

�

⌘⇤

! � E�



Excitonic Hamiltonian
In the end, the problem of the correlated propagation of particles and 

holes, i.e., the spectroscopy of neutral excitations, can be reduced to the 
diagonalization of an effective two-particle Hamiltonian 

H2p
KK0 = �EK�KK0 + ifKKKK0



Excitonic Hamiltonian
In the end, the problem of the correlated propagation of particles and 

holes, i.e., the spectroscopy of neutral excitations, can be reduced to the 
diagonalization of an effective two-particle Hamiltonian 

H2p
KK0 = �EK�KK0 + ifKKKK0

Screened interaction and mixing of electronic transitions:

KKK0 = i [WKK0–2VKK0 ]



Excitonic Hamiltonian
In the end, the problem of the correlated propagation of particles and 

holes, i.e., the spectroscopy of neutral excitations, can be reduced to the 
diagonalization of an effective two-particle Hamiltonian 

Ingredients:

En 'n(r) "�1
RPA

Quasiparticle 
energies 

(DFT + GW)

Single-particle wave 
functions (DFT)

Static electronic 
screening 

(DFT + RPA)

H2p
KK0 = �EK�KK0 + ifKKKK0



Take-home message

q Independent-particle picture fails
to reproduce key spectral features 
due to lack of electron-hole 
interaction q The electron-hole interaction

can be accounted for in the 
dynamics of the excited 
electronic system

q The equation of motion for the 
response function reduces to the 
diagonalization of an effective 
two-particle Hamiltonian in the 
basis of electronic transitions

q This yields the optical absorption
in the excitonic picture
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