The impressive progress in ultrafast laser technology, ranging from the femtosecond to the attosecond timescale and from the THz to the XUV frequency range, is making possible to probe real-time electronic and nuclear dynamics in atoms, molecules and solids. Fundamental insight can be gained into the primary photoinduced processes in systems with growing level of complexity. The capability of following and steering ultrafast dynamics has tremendous impact in a wide range of applications, from materials science to life sciences.
Clearly, advances in theories and methods inevitably require an intense exchange with the experimental community due to the complexity of the systems and of the measurements. In the last decade the effort in developing predictive and computationally feasible methods has virtually exploded.